Differential gene network analysis from single cell RNA-seq
نویسندگان
چکیده
منابع مشابه
netSmooth: Network-smoothing based imputation for single cell RNA-seq
Single cell RNA-seq (scRNA-seq) experiments suffer from a range of characteristic technical biases, such as dropouts (zero or near zero counts) and high variance. Current analysis methods rely on imputing missing values by various means of local averaging or regression, often amplifying biases inherent in the data. We present netSmooth, a network-diffusion based method that uses priors for the ...
متن کاملMonocle: Cell counting, differential expression, and trajectory analysis for single-cell RNA-Seq experiments
Single cell gene expression studies enable profiling of transcriptional regulation during complex biological processes and within highly hetergeneous cell populations. These studies allow discovery of genes that identify certain subtypes of cells, or that mark a particular intermediate states during a biological process. In many single cell studies, individual cells are executing through a gene...
متن کاملRNA-Seq workflow: gene-level exploratory analysis and differential expression
Here we walk through an end-to-end gene-level RNA-Seq differential expression workflow using Bioconductor packages. We will start from the FASTQ files, show how these were aligned to the reference genome, and prepare a count matrix which tallies the number of RNA-seq reads/fragments within each gene for each sample. We will perform exploratory data analysis (EDA) for quality assessment and to e...
متن کاملSINCERA: A Pipeline for Single-Cell RNA-Seq Profiling Analysis
A major challenge in developmental biology is to understand the genetic and cellular processes/programs driving organ formation and differentiation of the diverse cell types that comprise the embryo. While recent studies using single cell transcriptome analysis illustrate the power to measure and understand cellular heterogeneity in complex biological systems, processing large amounts of RNA-se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Genetics and Genomics
سال: 2017
ISSN: 1673-8527
DOI: 10.1016/j.jgg.2017.03.001